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ABSTRACT

Film cooling effectiveness measurements with injection
of air through discrete holes into a turbulent boundary layer
of air on a flat plate are described. The secondary air is
injected through either a single hole or a row of holes |
spaced at three diameter intervals across the span with an
injection angle of 35 degrees to the flow and in a different
series of tests through a single hole with lateral injection
angles of either 15° or 35°. Results are compared with ear-
lier tests to show that the £film cooling effectiveness in-
creases as the boundary layer thickness at the injection
location is decreased. Data from single hole tests are sim-
jlar to that for a row of holes at low blowing rates, but
significant differences are observed at higher blowing rates.
The effect of lateral injection is to provide cooling over a
wider area than when injection is normal to the flow or in-

clined downstream only.
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NOMENCLATURE

diameter of injection tube

blowing rate parameter, szz/pwUm

spacing between holes in tube diameters (i.e. Sp-D is
linear dimension across span(between centerlines of
adjacent holes)

temperature

adiabatic wall temperature

temperature of secondary air

mainstream temperature

velocity

average air velocity in injection tube

mainstream velocity

distance downstream of injection hole, see Figure 1
distance normal to tunnel floor, see Figure 1
lateral distance from injection hole, see Figure 1
injection angle with the flow, measured from X axis
in the X-Y plane, see Figure 1(a)

boundary layer displacement thickness

n(x,z), local film cooling effectiveness following
injection through a single hole or a row of holes,
defined by Equation 1

nl(x,z), local film cooling effectiveness following

injection through a single hole

i1
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nr(x,z), local film cooling effectiveness following
injection through a row of holes

n(x), laterally averaged film cooling effectiveness
downstream of a row of holes, defined by Bquatioh 2
ﬁp(x), predicted average film cooling effectiveness
across the span for injection through a row of holes
using results from single hole injection and the prin-
ciple of superposition, defined by Equation 4

n(x), lateral integral bf the film cooling effectiveness
produced by injection through a single hole, defined by
Equation 3

lateral injection angle, measured from Z axis in the
Y-Z plane, see Figure 1(b)

kinematic viscosity of mainstream

density

density of secondary air

density of mainstream

iii




FILM COOLING FOLLOWING INJECTION
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I. SUMMARY

The study described in this summary report was carried
out under NASA Contract NAS 3-7904. It is part of an ex-
tended investigation into film cooling following ejection
of a secondary gas through discrete holes into a turbulent
boundary layer of air on a flat plate. This report presents
adiabatic wall temperature measurements downstream of heated
jets of air in a subsonic wind tunhel.

Four different injection systems are used--a single
tube inclined at an angle of 35° with the flow, a row of
tubes at an angle of 35° with the flow and spaced at inter-
vals of three diameters across the span, and single tubes
at lateral angles of 35° and 15°. The surface on which the
wall temperatures are measured is designed to minimize con-
duction parallel to its surface in addition to being well
insulated in the direction normal to its surface. Thus the

temperatures measured approximate local adiabatic wall tem-




peratures. Similar trends are observed as were in a previous
study with a larger diameter injection tube. The film cooling
effectiveness increases as the dimensionless boundary layer
thickness is decreased for this injection system. This

trend is attributed to greater turning of the jet due to
higher relative velocities near the wall for the thinner
boundary layer.

At high blowing rates the film cooling effectiveness is
observed to be significantly higher for a row of holes than
for single hole injection. The row of jets blocks a greater
area of the mainstream than a single jet, resulting in a
greater force on the row of jets. The row of jets is then
turned more than a single jet, forcing the flow closer to
the wall and resulting in higher film cooling effectivenesses.
The effect of lateral injection is to widen the temperature
field at low blowing rates where the jet remains near the
wall and to hold the jet closer to the wall at high blowing

rates where the jet would otherwise flow into the mainstream.

IT. TINTRODUCTION

Film cooling is used extensively to protect structural
elements from a hot gas stream. A coolant (only gas is con-
sidered in the present study) is ejected locally through the
wall of the structure to be protected, isolating the struc-

ture from the hot gas stream. Actually instead of having a




discrete film the secondary fluid usually mixes with the
boundary layer. The wail is protected by the resulting
lower temperature and thicker boundary layer. The coolant
can be ejected through a continuous slot, through a strip
of porous material, or through an arrangement of discrete
openings in single or multiple rows.

Continuous slots or porous strips are an effective ar-
rangement for film cooling injection. However, in certain
applications, such as gas turbine blade cooling, stress or
manufaéturing considerations make it impractical to use con-
tinuous slots or porous strips, and rows of discrete open-
ings are preferable. A study of film cooling with such an
arrangement is complicated by the three dimensional nature
of the flow and temperature fields downstream from the open-
ings, and only sparse information is available for the effi-
cacy of this cooling method [1][2]. Some earlier research
has been reported on injection through discrete holes [3][4]
and a recent work [5] reports average (over the plate span
and length) film cooling effectiveness downstream of a row
of holes.

The present paper reports the results of part of an ex-
tended investigation into film cooling with ejection of the
secondary gas through discrete holes. The initial results
of this study, [1][2], dealt with ejection through a single
circular hole at angles of 90 and 35 degrees with the flow.

Adiabatic wall temperatures were reported as a function of




position with the blowing rate, M, as a parameter. Only a
slight variation of Reynolds number, U_D/v_, was possible.
The present paper reports--as a continuation of the study--
injection through a hole with smaller diameter at an angle B
(see Fig. 1(a)) of 35° with the flow. As in [1] and |2],
adiabatic wall temperature distributions downstream of heated
jets of air are investigated. 1In addition to the effect of
blowing parameter, the influence of the turbulent boundary
layer displacement thickness at the point of injection is
considered. Results are also reported for a row of holes at
an angle B of 35 degrees with the flow, and for injection
through single holes at angles ¢ (see Fig. 1(b)) of 15 and
35 degrees with the lateral directions.

The injection tubes are 1.18 cm in diameter and the tem-
perature of the injected air is approximately 55°C higher than
that of the mainstream. The range of variables studied is
as follows: freestream velocity of 30.5 to 61.0 m/s, dis-
placement thickness of the turbulent boundary layer at the
point of injection from 0.078 cm to 0.146 cm, and blowing
parameter (ratio of the mass flux of the injected flow to

the mass flux of the mainstream) of 0.1 to 2.0.

ITI. EXPERIMENTAL APPARATUS

The apparatus used in this study is the same as that

described earlier [1] and [2] with a few alterations in the




method of secondary injection. The wind tunnel shown in
Figure 2 draws the air mainstream from the room through an
entrance section, the test section, a diffuser, a blower,
and finally through a silencer before being discharged to
the outside.

The secondary or injected air is supplied by the buil-
ding air compressor. The flow rate is controlled by a needle
valve and is measured with a thin plate orifice meter. Tem-
perature fluctuations introduced by the compressor are elim-
inated by passing the air through a long coiled copper tubing
submerged in a large tank of water. The air is heated in a
stainless steel tube around which heating tapes are wrapped.

The orientation of the tubes in the injection section
is best described with the aid of Figure 1. The multiple
hole section contains five tubes spaced laterally across the
tunnel at three diameter center to center spacing. These
tubes hafe their outlet in the injection plate which can be
moved along the bottom of the tunnel in a direction normal
to the tunnel axis. The orientation is similar to that shown
in Figure 1(a) with B = 35 degrees. For single hole injec-
tion at an angle of 35° with the flow the side holes in this
same injection section are covered by tape and only the cen-
ter‘hole is used to inject air.

The injection sections for lateral injection have tubes
shown in Figure 1(b). The angle B with the flow is equal to

90° in these sections while the lateral angles, ¢, are 15




and 35 degrees, respectively. Each section contains a sin-
gle tube.

The test section bottom wall is close to being adia-
batic. It is well insulated in the direction normal to its
surface and is designed to have negligible conduction in all
directions parallel to its surface as well, so that local
adiabatic temperatures can be measured. Three columns (in
the flow direction) of calibrated thermocouples are located
in this surface, one along the center of the test section,
and one each at distances of 7.5 cm on either side. A de-
tailed description of this wall is contained in references

1 and 2.

IV, TUNNEL OPERATING CONDITIONS

With no secondary injection in the tunnel, the velocity
profile at the injection location is flat except for the
boundary layers on the walls of the test section. A fully
developed turbulent boundary layer profile exists on the
test surface. The displacement thickness of this boundary
layer varies from 0.078 cm to 0.146 cm at the point of
injection for different injection sections and for various
tunnel velocities. The mainstream has no swirl and a tur-
bulence intensity of about 0.5%. The tunnel is operated at
uniform free stream velocities of 30.5 and 61.0 m/s.

In the absence of a free stream flow in the test section,




a fully developed turbulent velocity profile exists at the
end of each injection tube. The temperature profile 1is
quite flat at approximately 55°C above the temperature of
the main flow. There is approximately a one percent varia-
tion in excess temperature across the five hole injection
section, the center tube being at the highest temperature
and the outer tubes at the lowest. The temperature differ-
ence between the outer tubes and the neighboring tubes is
much greater than the difference between the center and the
adjacent tubes so that the temperature difference between
tubes in the vicinity of the center tube where measurements
are taken is much less than one percent. No variation in

flow rate can be detected between any of the five tubes.

V. ADIABATIC WALL TEMPERATURE AND AVERAGE LATERAL FILM

COOLING EFFECTIVENESS

Adiabatic wall temperatures are presented in the form
of a film cooling effectiveness:
T _-T

n = 2w 2 (1)

T, -T,

The adiabatic wall temperature is defined as that temperature
which is established in steady state at any location on the
insulated surface under the influence of the flow described

in the foregoing when heat conduction within the plate and




radiative transfer are absent. It is measured by the ther-

mocouples installed along the centerline of the test plate.

By moving the injection section laterally, this row of ther-
mocouples us also used to measure the axial temperature dis-
tribution at various lateral positions, Z, from the jet.

The mainstream temperature, T is measured by thermocouples

0
in the test plate at positions unaffected by the injection.
The secondary air temperature, TZ’ is taken as that measured
by the thermocouples attached to the injection tubes 4% and

6 diameters upstream of their ends. These locations are far
enough upstream from the tube exit to be insensitive to tem-
perature distortions caused by the mainstream flow and by the
conduction from the tube to the injection plate.

The laterally averaged film cooling effectiveness fol-

lowing injection through a row of holes 1is

SD-D
2
— 1 f n.(x,z) dz (2)
n - g 'D T
D —SD'D
2

where Sp is the hole spacing in tube diameters (i.e. Sp*D
is linear distance across span between centerlinesof adja-
cent holes) and nr(x,z) is the film cooling effectiveness
distribution for a row of holes. If there were no interac-
tion between the jets along a row then the lateral tempera-

ture distribution for a row of holes could be found by the

principle of superposition, i.e. summing up the contributions




to the film cooling effectiveness from each individual hole
in the row (see Fig. 3). The effect across the span of sin-

gle hole injection can be defined by

o 1

fe g | npeon a (3)
where nl(x,z) is the film cooling effectiveness distribution
for single hole injection. The predicted average effective-

ness for a row of such holes is then
— =ﬁ
np SB

- shp | Mmoo d (4)

- 00

Comparison of n with ﬁb gives a measure of how well the
method of superposition works. Comparison of values

of n for different geometries of single hole injection in-
dicates the total cooling effect (across the span) of the

jet at a givén distance downstream of injection.

VI. EXPERIMENTAL RESULTS

Results of the single hole experiments with injection
at an angle of 35° with the flow are shown on Figures 4-11.
Figures 4-7 represent runs at a free stream veiocity of 30.5
m/s; Figures 8-11 represent runs at 61.0 m/s. These data

display the same trends as earlier data [1][2] taken with
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injection through a tube which had twice the diameter of fhe
present one. The film cooling effectiveness at any location
is highest for the blowing rate M=0.5. At M=2.0, the effec-
tiveness is very low at all locations, indicating that the
jet penetrates into the mainstream and does not remain near
the wall. The film cooling effectiveness on the centerline
(Z/D=0.0) decreases with X/D while at larger values of Z/D
it first increases with X/D before decreasing. This result
is attributed to the spreadingiof the jet.

Figure 12 compares some results from Figures 4-11 for
two different values of the freestream velocity at three dif-
ferent blowing rates. The runs at M=0.5 and 1.0 show the
effectiveness to be higher for the higher freestream velocity.
The effectiveness values at M=2.0 are so small that compari-
sons between them are meaningless. Since both the Reynolds
number and the boundary layer thickness vary with the free-
stream velocity, it is difficult to decide which parameter
causes the differences between the curves for the two veloci-
ties on this graph.

The combined effect of both free stream velocity and in-
jection tube diameter at a fixed value of the Reynolds number,
U_D/v_, can be observed in Figure 13. The data for the lar—v
ger diameter tube are taken from references 1 and 2. The
solid symbols, representing the larger diameter tube and
lower freestream velocity, show the centerline film cooling

effectiveness to be higher than the open symbols that repre-
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sent the runs with the smaller diameter tube and higher vel-
ocity. This indicates that the boundary layer thickness in-
fluences the effectiveness.

Figure 14 shows the centerline film cooling effective-
ness at three different downstream locations as'a function of
the dimensionless boundary layer displacement thickness,
§*/D. The data on this figure is not all at one value of
the Reynolds number, U _D/v_ . The data with the closed points
on the left of the graphs are for the larger diameter hole
[1][2]; the data with the open points on the right refer to
the smaller diameter hole. For each set, the higher velocity
run lies to the left of the lower velocity run. The, data
show a definite trend--the film cooling effectiveness de-
Creases as the dimensiénless boundary layer displacement
thickness is increased. This trend seems quite reasonable.
As the injected air enters the mainstream boundary layer 1t
encounters a higher relative velocity at positions closer to
the wall for a thinner boundary layer. This has the effect
of turning the injected air more rapidly, decreasing its pen-
etration, and therefore leading to higher values of the film

cooling effectiveness.

Data taken with a row (across the span) of injection holes

are presented in Figures 15-17. The tubes, which are at an
angle of 359 with the flow, are spaced laterally at three
diameter intervals. Some values from Figure 17 are compared

with data for a single hole under the same conditions in
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Figure 18. At blowing rates of M=0.5 and 1.0, there is
little difference between the data for a single hole and

for a row of holes. The centerline values are nearly iden-
tical énd the values midway between holes (Z/D=1.5) are only
slightly higher for a row of holes.

If the film cooling effectiveness values for a row of
holes is calculated from the superposition of single hole
values as in some film cooling models (at low blowing rates)
centerline values for a single hole and a row of holes should
be nearly identical since the film cooling effectiveness for
a single hole at Z/D=3.0 is very small. Superposition also
predicts an effectiveness for a row of holes twice as large
as for a single hole at Z/D=1.5. Figure 18 shows that the
centerline values compare favorably at M=0.5 and approximately
at M=1.0, but the data midway between holes (Z/D=1.5) do not
follow the expected trend (i.e. they are not significantly
larger for the row of holes).

Lateral averages for some of the multiple hole data and
predicted lateral averages from single hole data are presented
in Figure 19. Also shown is a correlation [6] for the film
cooling effectiveness downstream of a two dimensional slot
at an angle of 35° for M=0.5. The outlet area of the slot
is considered to be the same as the area of the row of holes
spaced at three diameter intervals. The mass injection per
unit span is thus the same for the row of holes and for the

slot at the same blowing rate. For M=0.5 the principle of
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superposition predicts slightly higher spanwise average ef-
fectiveness for a row of holes than was measured. Both the
predicted and the measured average values for the row of

holes fall below the value for slot injection. At M=1.0
agreement between superimposed single hole and multiple hole
data is quite good for about the first 25 diameters downstream
of injection. Further downstream the centerline single hole
results continue to decrease while the multiple hole results
remain fairly constant.

Differences in the film cooling effectiveness for injec-
tion through a single hole and injection through a row of
holes appear at higher blowing rates (Fig. 18 and 19). Where-
as the single hole results for M=1.5 and 2.0 decrease with
X/D to very small values of n, the row of holes data approach
a relatively constant value of n. At M=1.5, the centerline
£ilm cooling effectiveness of the row of holés remains at
approximately 0.1 while the effectiveness midway between
holes (Z/D=1.5) increases to this value as the jets spread.
The measured n for a row of holes increases slightly with
X/D while ﬁ? decreases when calculated from measurements for
a single hole at M=1.5. At M=2.0, both the centerline and
between-hole effectivenesses increase to approximately 0.13
at X/D=20. The increase in effectiveness from the injection
location to X/D=20 is probably due to jet spreading toward
the wall. The single hole effectiveness at M=2.0 is much

smaller (too small to measure at Z/D=1.5 and too small to
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evaluate §i and ﬁp accurately). n for a row of holes at M=2.0
increases to a constant value of approximately 0.13.

These differences between single hole and multiple hole
injection can also be observed on Figure 20 where the center-
line value of the film cooling effectiveness is cross-plotted
against the blowing parameter M at several axial positions.
The peak effectiveness for single hole injection is located
at a blowing rate of approximately 0.5 as it was in [1]and [2].
The values for multiple hole injection are higher than their
counterparts for single hole injection at the higher blowing
rates. The increased effectiveness of a row of holes compared
to a single hole is attributed to the greater blockage that
the main flow faces with the row of jets. There is less area
available for the mainstream to flow around and under the row
of jets than with a single jet. This is particularly true
some distance downstream of injection, resulting in a greater
turning of the row of jets forcing the flow down towards the
wall. Higher effectiveness is not observed at low blowing
rates for a row of holes since the jets do not then signifi-
cantly depart from the wall.

Figures 21 and 22 present film cooling effectiveness re-
sults for injection at lateral angles of 35 and 15 degrees
respectively. The film cooling effectiveness is presented
as a function of lateral position Z/D with location in the
flow direction X/D as a parameter. The projections of the

inside edges of the circular tube through which the secondary
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fluid is injected are shown on the Z/D axis at *0.87 for
0=35° and *1.93 for ©=15°. Values of # for injection through
these 1atera11y inclined tubes are presented in Figure 23.

In these tests the highest values of both the peak effective-
ness and the lateral integral of the effectiveness for $=35°
occur at M=0.5 near the hole. Downstream the lateral integral be-
comes slightly larger for M=1.0 as compared to M=0.5. Ef-
fectiveness values for M=2.0 are very low, indicating that
the jet has penetrated into the main flow. For $=15° the
maximum local effectiveness for M=1.0 is slightly higher than
for M=0.5, but the wider field of high effectiveness and the
larger values of f for M=0.5 indicate that this is the more
effective blowing rate. The values of 7N are higher for $=15°
than for @=35°. The jet is expected to remain closer to the
wall for the smaller angle resulting in a larger film cooling
effectiveness. In general the laterally integrated effec--
tiveness (17}) with lateral injection is higher than for injec-
tion through the single hole inclined downstream except far
downstream at M=0.5.

To show the effect of normal injection on the total
cooling effect of a jet, lateral integrals of data from [1]
and [2] are presented in Figure 24. The open symbols are for
normal injection, the solid ones are for injection at an ang-
le of 35° with the flow. The solid symbols from this plot
differ from the data from Figure 23 for injection at an

angle of 35° with the flow because of different values of
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free stream velocity and hole diameter (cf. Figure 14). At
M=0.5, where the jets remain near the wall, Figure 24 shows
that injection at an angle of 35° with the flow yields higher
integrated.values of the film cooling effectiveness than nor-
mal injection does. At M=1.0, where both jets penetrate into
the main flow, the integrated values are actually higher for
normal injection (possibly due to the greater jet mixing and
spreading with normal injection).

Figures 25 and 26 contain contours of constant film
cooling effectiveness on the floor of the test section.
These curves are determined by an interpolation scheme that
fits quadratic equations to sets of three data points. Fig-
ure 25 is for data at M=0.5; Figure 26 is for M=1.0. On each
figure the topmost portion is for injection at an angle with
the flow (B) of 35° and middle and lowest sections are for
lateral injection at angles of 35 and 15 degrees respectively.
Thus the degree of lateral injection increases from top to
bottom of each figure. At M=0.5, a blowing rate for which the
jet is not believed to leave the wall when injected with the
flow, Figure 25 shows that the effect of lateral injection
is to widen the temperature field while reducing the peak
values of the effectiveness. For M=1.0, where the jet is
believed to penetrate into the main stream when injected
downstream with B=35° (®=900), Figure 26 shows that the effect
of lateral injection is to both widen the temperature field

and increase the maximum effectiveness. Thus, at high blow-
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ing rates where the jet leaves the wall when injected down-

stream (B=350, ®=900) the introduction of lateral injection

will hold the jet closer to the wall and do a more effective
job of film tooling.

To illustrate the effect of normal injection, lines of
constant film cooling effectiveness for data taken from ref-
erences 1 and 2 are presented in Figure 27. The upper two
diagrams are for injection normal to the flow; the lower two
are for injection at an angle of 35° with the flow. The
lower two diagrams differ from the upper portions of Figures
25 and 26 because of different values of free stream velocity
and hole diameter (cf. Figure 14). The diameter of the in-
jection tubes used in [1] and |2| was 2.35 cm and the free
stream velocity for the data in Figure 27 was 61.0 m/s. The
data in Figures 25 and 26 was taken with 1.18 cm diameter in-

jection tubes and at a free stream velocity of 30.5 m/s.

VII. RESUME

An experimental investigation has been conducted to
determine the adiabatic wall temperature distribution pro-
duced by film cooling on a flat plate. An air stream flows
along the flat surface forming a turbulent boundary layer,
and secondary air is injected into this stream from circular
tubes that end flush with the wall. Four different injec-
tion systems are used--a single tube inclined at an angle of

o}

35 with the flow, a row of tubes also at an angle of 35°
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with the flow and spaced at three diameter intervals, and
single tubes at lateral angles of 35 and 15 degrees. The
film cooling effectiveness for single hole injection at an
angle of 35° with the flow varies not only with position and
blowing rate, but also decreases as the dimensionless boun-
dary layer displacement thickness §*/D is increased. Little
difference in film cooling effectiveness between single hole
and multiple hole injection is observed for M=0.5. The effec-
tiveness for multiple holes, comparing it with the predic-
tions from the single hole experiments by superposition, is
significantly higher at higher blowing rates. The effect of
lateral injection through a single hole is to widen the tem-
perature field and to decrease the peak effectiveness for the
low blowing rate (M=0.5) in which the jet remains near the
wall in any arrangemeﬁ%. For higher blowing rates in which
the jet penetrates into the mainstream, lateral injection
holds the jet closer to the wall, thus increasing both the
width of the temperature field and the peak film cooling

effectiveness.
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Fig. 1(b) Flow field and coordinate system associated with a
laterally inclined jet interacting with a mainstream.
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tiveness distributions for single hole injection at an
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Fig. 17 Axial film cooling effectiveness distributions f%F in-
jection through a row of holes at an angle of 357 with
the main flow, U,=30.5 m/s, M=0.5, 1.0, 1.5, 2.0.
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